
SAND20XX-XXXXR
LDRD PROJECT NUMBER: 15-2618
LDRD PROJECT TITLE: Versatile Formal Methods Applied to Quantum Information
PROJECT TEAM MEMBERS: Wayne Witzel, Mohan Sarovar, Kenneth Rudinger

ABTRACT:

Using a novel formal methods approach, we have generated computer-verified proofs of major theorems
pertinent to the quantum phase estimation algorithm. This was accomplished using our Prove-It software
package in Python.

While many formal methods tools are available, their practical utility is limited. Translating a problem
of interest into these systems and working through the steps of a proof is an art form that requires much
expertise. One must surrender to the preferences and restrictions of the tool regarding how mathematical
notions are expressed and what deductions are allowed. Automation is a major driver that forces restrictions.
Our focus, on the other hand, is to produce a tool that allows users the ability to confirm proofs that are
essentially known already. This goal is valuable in itself.

We demonstrate the viability of our approach that allows the user great flexibility in expressing state-
ments and composing derivations. There were no major obstacles in following a textbook proof of the
quantum phase estimation algorithm. There were tedious details of algebraic manipulations that we needed
to implement (and a few that we did not have time to enter into our system) and some basic components that
we needed to rethink, but there were no serious roadblocks. In the process, we made a number of convenient
additions to our Prove-It package that will make certain algebraic manipulations easier to perform in the
future. In fact, our intent is for our system to build upon itself in this manner.

INTRODUCTION:

The quantum phase estimation algorithm solves the following problem. Given a unitary operator U and
quantum state |u〉 such that U |u〉 = e2πiϕ|u〉, estimate ϕ. The algorithm uses a prepared register of t quan-
tum bits and an input register containing |u〉. It puts the t-qubit register into a state that, when measured,
produces a binary expansion that approximates ϕ. It requires the ability to apply qubit-controlled applica-

tions of U20 , U21 , ..., U2t−1

. If these operations cannot be performed efficiently, e.g., if U2k is implemented
in O(2k) time, then this quantum algorithm offers no advantage over the classical algorithm. However, for

special instances of U , it is possible to implement U2k efficiently, in O(k) time, and then there is a quantum
speedup. The most well known application is as a main component of Peter Shors quantum factoring algo-
rithm used to factor numbers in polynomial time. There is no known classical algorithm to accomplish this
feat.

The following equations define the quantum phase estimation (QPE) algorithm using the quantum Fourier
transform algorithm (QFT) as a sub-component.

∀U,n,t /t+n QPE0(U, n, t) =

H •

/t−1

QPE0(U, n, t− 1)
/n U2t−1

(1)

|0〉⊗t /t

QPE0(U, n, t)
QFT(t) |Ψ〉

|u〉 /n |u〉
(2)

1

SAND2015-9617R

Equation (1) defines a main sub-component of the algorithm, denoted QPE0, through recursion over the
register of t qubits. The top quantum circuit wire on the left of the equation is the t-th qubit in this register.
A Hadamard operation is applied to this qubit and then it is used as a control qubit for conditionally applying
U2t−1

to the bottom n quantum wires (the other qubit register). The main algorithm is shown in Eq. (2).
It applies QPE0 to both qubit registers, with the top register initialized to the |0〉⊗t state and the bottom
register initialized to the the |u〉 state. It then applies QFT to the top register to produce the output of the
algorithm. Measuring the output of the top register is meant to give an estimate of ϕ.

Since |u〉 is supposed to be an eigenvalue of U , the state of the bottom register should not be altered by

this algorithm (ideally applied). When U2k−1

is (conditionally) applied, although the state of the bottom

register is unchanged, the overall state is (conditionally) multiplied by e2
kπiϕ. When the corresponding

control qubit is in a quantum superposition state, the state becomes a superposition of acquiring and not
acquiring this scalar factor (one of those odd quantum phenomena). When a Hadamard gate is applied to a
|0〉 input, it transforms into the superposition state (|0〉+ |1〉) /

√
2. When this state is used as the control

in a controlled-U2k gate, the resulting state is the entangled superposition
(
|0〉 ⊗ |u〉+ e2

kπiϕ|1〉 ⊗ |u〉
)
/
√

2

(where the tensor product, ⊗, is only between the control qubit of interest and the bottom register). After
applying the controlled operation for all of the top register qubits, this will be a superposition over all
computational states (all combinations of |0〉 and |1〉 states), with different scalar factor that depends upon

ϕ. For the computation state indicated by xk, where each x is 0 or 1, this factor is
∏t
k=1 e

2kxkπiϕ. This
quantum state encodes ϕ information, but measuring this state in the computational basis will yield an equal
distribution of results since the square of the absolute value of these factors is each equal to one (it is the
square of the absolute value of these quantum state amplitudes that determines outcome probabilities). The
QFT component transforms this encoding into something useful for the quantum measurement. After this
is applied, the top register becomes

|Ψ〉 =

2t−1∑
j=0

 1

2t
·

2t−1∑
k=0

(
e

−(2·π·i·k·j))
2t · e2·π·i·ϕ·k

) . (3)

Using Prove-It, we will prove that the distribution of measurement outcome probabilities of this t-register
state is localized around the approximate binary encoding of ϕ. In fact, there is a O(1) probability (greater
than half) that the measured result is within 3/2t of ϕ. With the number of qubits and algorithm time

scaling polynomially with t (assuming that we can implement U2k in polynomial time), this is exponentially
more efficient than the best known classical algorithm. We have followed the proof on pages 223-224 of
Nielsen and Chuang, Quantum Computation and Quantum Information which is a standard reference in the
field.

DETAILED DESCRIPTION OF EXPERIMENT/METHOD:

Prove-It is a code base written in the Python programming language that allows one to generate proofs in
Python. A proof in the Prove-It system is specified as a derivation tree with a finite number of allowed
derivation step types.

Before getting into some details of the Prove-It system, we shall discuss some background philosophy.
The following is a list of guiding principles used in the development of the system.

Freedom of expression
Ideally, one should be able to express anything in the Prove-It system that is unambiguous and is
standard notation in any field. The internal representation of this expression in Prove-It should be as

2

close as possible to a direct translation to the written expression. We have had to alter some notation
that may be standard but is somewhat ambiguous. One example is the use of ellipses () for which we
have created our own notation that is unambiguous. But we strive, to the extent possible, to allow
a user to be flexible in how they express statements, and allow these statements to be powerful. A
theorem is a statement, represented by an expression, which applies generally to a variety of specialized
cases. This is how statements may be powerful, and our goal is to allow Prove-It statements to be as
limitless as possible.

New notation is defined via new axioms
To be versatile in expressing anything in any standard notation, a user must be able to define their
notation independently of the Prove-It core. One does this by adding axioms to the system. Axioms
may be any statements that the user deems fit to provide defining properties for their notation and
mathematical constructs. Although it is easy to add an axiom that introduces a logical contradiction
or is otherwise incorrect, our philosophy is to allow the user to do as they wish but make a clear
disclaimer that the proof of any theorem may only be as trusted as the axioms employed in the proof.
The axioms employed in a proof are easily tracked and should be clearly indicated (grouped into
packages for convenience). As Prove-It gains popularity, the validity of axiom packages will be tested
through crowd sourcing.

Prove-It should have a lightweight core
Since most of the notation that is used in Prove-It is defined via axioms that are added to the system,
the core of Prove-It can be very lightweight. The Prove-It core only needs to understand a few core
expression types and derivation rules in order to derive virtually anything from the use of powerful
axiom and theorem statements.

Harmless nonsense is... well... harmless
To truly be flexible and robust, axioms that allow one to derive harmless nonsense should be embraced
rather than restricted. It can be very cumbersome to make restrictions that prevent nonsensical
statements from being derived. Being overly restrictive can limit the utility of the system. On the
other hand, nonsense can be completely harmless. Consider the statement ∀A,BA ∧ B ⇒ A where
∀ is the universal quantifier (forall), ∧ is the logical and operator, and ⇒ is the implies operator
(logical implication). Since ∧ is an operation that is only defined when applied to Booleans, the
quantifier should perhaps be restricted to A and B being in the set of Booleans (True or False):
∀A,B∈BOOLEANSA∧B ⇒ A. However, if one specializes the original statement to non-Boolean objects,
it derives a harmless statement because the hypothesis of the implication cannot be proven. For
example, specializing A to 5 and B to 10 will produce 5 ∧ 10 ⇒ 5. Fine. This doesnt make sense,
but since we cannot prove that 5 ∧ 10 is a true statement (with reasonable axioms), then this does
not allow one to prove that 5 is a true statement. It is therefore harmless. While it is possible to use
Prove-It only with strict axioms that prevent nonsense, it is designed to be flexible.

Statements are represented with expression trees. Each expression (including sub-expressions) is an
instance of a core Prove-It expression type. The core of Prove-It only needs to understand expressions in
the context of core expression types. Most employed notation is defined through axioms. The Prove-It
core only needs to know how to apply (specialize) these axioms. Beyond that, the core is agnostic to ones
notation (with just a couple of exceptions). The following is a complete list of the core expression types with
descriptions:

Variable
In Prove-It, a variable is a label without any inherent meaning. The meaning of a statement should

3

not ever change if one replaces a variable with any other variable, as long as distinct variables remain
distinct.

Literal In contrast to variable, literals are labels that do have contextual meaning. They are defined
through axioms (with just a couple of exceptions for special literals that are understood at the core
level). Specific operators are literals, and so are numbers, labeled sets (reals, integers, ...), etc. If it is
a label with a meaning, it must be a literal in Prove-It.

Operation
An operation consists of an operator and operands. Each of these is a sub-expression. The operator
is often a literal, but it can also be a variable or a Lambda function. For example, in the statement
∀f,x,y(x = y)⇒ (f(x) = f(y)) (the substitution axiom), f is a variable acting as an operator because
it is a stand-in for any operator. The operands is an expression-list or expression-tensor.

Lambda
A lambda function consists of arguments and the lambda expression. It represents a mapping from the
arguments to an expression that involves the arguments. For example, (x, y)→ x+ y. The arguments
is an expression-list.

Named-Expressions
A named-expressions expression maps each of a set of names (any string) to a sub-expression. Essen-
tially, this simply labels the sub-expressions and is useful for making the internal representation of the
expression unambiguous (e.g., when the order of the operands does not intrinsically distinguish their
role).

Expression-List
An expression-list is an ordered list of any number of sub-expressions.

Expression-Tensor
An expression-tensor maps lists of indices to sub-expressions. This is useful for expressing matrices,
quantum circuits, or anything with a 2-dimensional representation (or higher dimensional). The tensor
may be sparse (not every combination of indices needs a sub-expression), but the dimensionality must
be consistent (each list of indices must have the same length).

Multi-Variable
A multi-variable is a stand-in for any number of variables. It is denoted with a box index, such as x�.
This notation is meant to convey the notion that there is an x1 ,x2, ... except that the actual index
labels are irrelevant and the number of them is unspecified (it may be replace with zero variables, in
fact). A multi-variable must be a sub-expression of an etcetera, described below.

Etcetera
An etcetera expression is a placeholder that may be expanded to any number of sub-expressions within
an expression-list. This is our way to represent ellipses (...) but without any ambiguity. The following
are examples of what one may do using etcetera (and multi-variables):
∀...,x�,...,y�,.....+ x� + ...+ y� + .. = ..+ y� + ...+ x� + ..
may be specialized, for example, to a+ c+ d = c+ d+ a in one step.
∀x,..,y�,..x · (..+ y� + ..) = ..+ x · y� + ..
may be specialized, for example, to a · (b+ c+ d) = a · b+ a · c+ a · d in one step.

Block
Block is similar to etcetera but expands into an expression-tensor rather than an expression-list. This
is useful in the context of quantum circuits for substituting a multi-qubit gate for an entire sub-circuit.

4

The concepts for the expression-tensor, multi-variable, etcetera, and block expression types were developed
over the course of this project. Working out an appropriate treatment for these concepts was a considerable
challenge that we encountered. These concepts may evolve further in the future.

Ideally, there is a direct translation between internal and external representations within Prove-It. How-
ever, this is not enforced in any way. The translation from the internal to the external representation is
at the discretion of the user and is very flexible in terms of formatting expressions using LaTeX. As with
the freedom to add axioms at will, this brings potential danger but we resolve to allow users to proceed
as they see fit with clear disclaimers. The external representations are only for convenience and may only
be trusted to the extent that they faithfully convey the internal representation. One must not only check
the axioms employed in a proof for their validity, but also check the internal representations of the axioms
and the internal representation of the theorem being proven. To the extent that the internal and external
representations are direct translations of each other, this is relatively straightforward.

A proof in Prove-It is a derivation tree that deduces a theorem (the root of a tree) from a set of axioms
and/or theorems (the leaves of the tree). Each derivation step indicates how a particular statement is proven
under a set of assumptions given previously proven statements (possibly with other assumptions). The
following is a list of the recognized derivation step types with descriptions:

Axiom/theorem invocation
Any axiom or theorem can be invoked within a proof and will be accepted as truth in the context of a
proof. An axiom or theorem may be any Prove-It expression that contains no free variables (meaning
that all variables must be bound explicitly as lambda arguments). For any proof, it is possible to trace
back all used axioms (directly or indirectly via the proof of a used theorem) and all used unproven
theorems. A proof is not complete unless all of theorems that it uses directly or indirectly have complete
proofs for themselves.

Assumption
Any statement may be taken to be true by assumption. The assumption must be carried up toward the
root of the derivation tree, in the set of required assumptions, until it is eliminated through hypothetical
reasoning or generalization conditions.

Relabeling
Changes variables. Since variables are labels with no intrinsic meaning, the meaning of the statement
is unchanged by relabeling except when changing which variables are distinct from each other. For
example, relabeling P (x, y) into P (a, a) does have a different meaning. However, the statement is only
weakened by such a change, so this derivation step is allowed.

Specialization Eliminates universal quantification (a forall operation). Substitutes each quantified variable
with an expression and each quantified multi-variable with an expression-list (using the etcetera/block
machinery described above). Requires proof of all conditions placed upon those variables from the
original forall operation. These are added as branches in the derivation tree. For example, one may
specialize ∀A∈BOOLEANSA ⇒ (A ∨ B) by replacing A with P (x) as long as one can also satisfy the
condition that P (x) ∈ BOOLEANS. The process of specialization may introduce unbound variables
that are taken as arbitrary variables (e.g., P and x in the previous example would be unbound, arbitrary
variables, unless they happen to be literals). These may be bound further up the derivation tree using
generalization.

Generalization
Introduces universal quantification (a forall operation) over unbound Variables as desired. May apply
any domain restriction or condition on this universal quantification. These only weaken the gener-
alized statement, making it no less proven than the unconditional forall statement. Applied domain

5

restrictions or conditions may serve to eliminate assumptions. For example, ∀x∈SP (x) eliminates the
assumption x ∈ S because this statement is true under the set of assumptions Ω as long as we can
prove P (x) under the assumptions Ω

⋃
{x ∈ S}.

Implication (modus ponens)
Proves that some statement B is true after proving statements of the form A⇒ B and A.

Hypothetical reasoning
Proves a statement of the form A⇒ B after proving statement B using statement A as an assumption.
Eliminates the hypothesis (e.g., statement A) as an assumption.

Axiom elimination
Transforms a set of axioms into a set of assumptions. When tracking the axioms that are employed in
a proof, these ones may not be counted (unless used in another branch of the derivation tree) because
they are ultimately not necessary for the proof if they can be transformed into assumptions and then
eliminated. In the process, literals that only appear in the axioms being eliminated are transformed
into Variables (their axiomatic, contextual meaning has been lost except within the assumptions that
are carried along in the derivation tree). This is useful since all definitions in Prove-It are made via
axioms involving literals and some definitions are only a temporary convenience. In our quantum
phase estimation proof, we employ this to define some useful literals for the problem set-up (such as
U, u, ϕ, t, etc.) that are used in multiple theorems but later transformed into Variables and quantified
over universally (i.e., ∀U,u,ϕ,t,...) in the final theorem.

RESULTS:

We begin our verification of the quantum phase estimation by define a set of axioms that defines the problem.
This involves defining both temporary and permanent literals. By temporary literals, we mean convenient
labels for setting up the problem and using throughout the proof, but ones that we ultimately would like
to quantify over (as variables) for a final theorem that may be used outside of this context. This would
be done through axiom elimination (which has not yet been implemented in the system, but the concept is
straightforard). The permanent literals, in contract, are necessary in order to define what the proof means.
In particular, a label for the algorithm is a permanent literal. Its definition is required in order to interpret
the proof.

The following is a list of all of the axioms asserted within the quantum phase estimation context. We
provide some further descriptions below.

1. U ∈ SU (n)

2. ϕ ∈ [0, 1)

3. (U |u〉) =
(
e2·π·i·ϕ|u〉

)
4. t ∈ N+

5. ∀U,n,t /t+n QPE0(U, n, t) =

H •

/t−1

QPE0(U, n, t− 1)
/n U2t−1

6.
|0〉⊗t /t

QPE0(U, n, t)
QFT(t) |Ψ〉

|u〉 /n |u〉

6

7. m =M (|Ψ〉)

8. ϕm = m
2t

9. b = bϕ · 2tc

10. δ =
(
ϕ− b

2t

)
11. ∀ε∈Z (Psuccess (ε) = Pr[(|(m− b)|mod 2t ≤ ε)])

12. ∀ε∈Z (Pfail (ε) = (1− Psuccess (ε)))

13. ∀a,b∈Z ((a⊕ b) = ((a+ b) mod 2t))

14. ∀l∈Z (αl = (〈b⊕ l||Ψ〉))

Axioms 1-3 set up the basic quantum phase estimation problem. The goal of the algorithm is to estimate
ϕ for a given U (unitary quantum operation) and |u〉 (ket, or quantum state). The U operation involves n
qubits. Axioms 4-8 defines the quantum phase estimation algorithm using a quantum circuit represantation
and applies it to the problem of interest for a particular number of register qubits t. The precision of the
estimate is determined by t. This is the main fact that we seek to prove. Axiom 5 [the same as Eq. (1]
defines one component of the quantum phase estimation circuit denoted QPE0 using a recursive definition.
In this definition, U , n, and t are variables that are universally quantified (they happen to have the same
representation as literals with which they correspond). Axiom 6 [the same as Eq. (2)] defines the rest of the
quantum circuit that involves the quantum Fourier transform as a component denoted QFT. The quantum
Fourier transform algorithm is a sub-component that requires its own independent proof and is out of our
scope. It provides an exponential speedup over classical algorithm on its own. Axiom 6 implicitly defines |Ψ〉
as the output quantum state of the algorithm. Axiom 7 defines m to be the random variable outcome of the
quantum measurement of |Ψ〉, the output of the quantum algorithm (M denotes quantum measurement).
Axiom 8 defines ϕm to be the random variable estimate of ϕ. Axioms 9-12 are all related to defining success
versus failure of the quantum algorithm output. Axiom 9 defines b to be the outcome of m that would give
us the closest estimate to ϕ without exceeding it. Axiom 10 defines δ to be the difference between ϕ and this
closest undershooting estimate. Axiom 11 defines the probability that the outcome succeeds in being within
some ε of b, and Axiom 12 defines the corresponding probability of failure. Axioms 13 and 14 are convenient
definitions within the proof. Axiom 13 defines a short-hand for adding integers modulo 2t. Axiom 14 defines
αl to be the amplitude of the outcome state |Ψ〉 to a state denoted by l that is relative to b.

Below we list each of the theorems that we have either proven, or intend to prove, within the quantum
phase estimation context. For each theorem, we indicate whether or not we have produced the proof, the
lines of code to generate the proof, the number of theorems/axioms that this proof employed, and the number
of unique nodes in its derivation tree (nodes are often repeated in derivation trees but we will not count them
separately). We also provide brief notes about each theorem to indicate theorems/axioms that it derives
from and how it fits into the larger picture. For unproven theorems, we indicate what it would require to
finish them. Strictly speaking, none of our theorems are complete because they all rely upon theorems in
other contexts that we have not yet proven in the Prove-It system (for algebraic manipulation and various
other well-known facts).

1. 2t ∈ N+

status: proven lines of code: 10 used theorems/axioms: 8 unique nodes: 19
Derives from Axiom 4 (t ∈ N+) and number set properties.

2. 2t−1 ∈ N+

status: proven lines of code: 9 used theorems/axioms: 12 unique nodes: 26
Derives from Axiom 4 and number set properties.

7

3. (2t − 1) ∈ N+

status: unproven lines of code: - used theorems/axioms: - unique nodes: -

Derives from Axiom 4. Since t ≥ 1 in order to be in N+, (2t − 1) ≥
(
(21 − 1) = 1

)
. This can be done

easily, we just did not have time.

4. 2t 6= 0
status: proven lines of code: 9 used theorems/axioms: 8 unique nodes: 26

Derives from Axiom 4 and number set properties.

5. ∀a,b∈Z ((a⊕ b) ∈ Z)
status: proven lines of code: 14 used theorems/axioms: 6 unique nodes: 16

Derives from Axiom 13 (the definition of our ⊕ notation), substitution, and number set properties.

6. ϕ ∈ R
status: proven lines of code: 6 used theorems/axioms: 5 unique nodes: 10

Derives from Axiom 2 (ϕ ∈ [0, 1)) and number set properties.

7. b ∈ Z
status: proven lines of code: 7 used theorems/axioms: 13 unique nodes: 30

Derives from Axiom 9 (the definition of b), Theorem 1, Theorem 6, substitution, and number set
properties.

8. ∀ε∈N+

(
∀l∈{(ε+1)...2t−1}

(
l ∈ {

((
−2t−1

)
+ 1
)
. . . 2t−1}

))
status: proven lines of code: 25 used theorems/axioms: 21 unique nodes: 67

Derives from Theorem 3 and number set properties as well as some properties of ordering relations
(less/greater than, etc.).

9. ∀ε∈N+

(
∀l∈{((−2t−1)+1)...(−(ε+1))}

(
l ∈ {

((
−2t−1

)
+ 1
)
. . . 2t−1}

))
status: proven lines of code: 25 used theorems/axioms: 20 unique nodes: 69

Derives from Theorem 3 and number set properties as well as some properties of ordering relations
(less/greater than, etc.).

10. (2t · δ) ∈ [0, 1)
status: proven lines of code: 29 used theorems/axioms: 6 unique nodes: 13

Derives from Axiom 9 and 10 (the definition of δ) as well as Theorems 1, 6, and 7 along with number
set properties and algebraic manipulations.

11. δ ∈ R
status: proven lines of code: 7 used theorems/axioms: 13 unique nodes: 26

Derives from Axiom 10 (the definition of δ) and Theorems 1, 6, and 7 along with substitution and
number set properties.

12. ∀l∈Z (αl ∈ C)
status: unproven lines of code: - used theorems/axioms: - unique nodes: -

Derives from Axiom 14 (the definition of αl) and a fundamental property of quantum state projections.
This is straightforward, but we did not have time to get to it.

13. ∀l∈Z ((|αl| ∈ R) ∧ (|αl| ≥ 0))
status: proven lines of code: 18 used theorems/axioms: 4 unique nodes: 10

Derives from Theorem 12 and number set properties.

8

14. ∀l∈Z | l 6=0 ((2t · δ) 6= l)

status: proven lines of code: 40 used theorems/axioms: 22 unique nodes: 66
Derives from Theorem 10, number set properties, and some algebraic and logical manipulations. This
is a proof by contradiction.

15. ∀l∈Z | l 6=0

(
δ 6= l

2t

)
status: proven lines of code: 29 used theorems/axioms: 18 unique nodes: 53

Derives from Theorem 1 and 14, number set properties, and some algebraic and logical manipulations.
This is a proof by contradiction as well.

16. ∀l∈{((−2t−1)+1)...2t−1}
((
δ − l

2t

)
∈
[(
− 1

2

)
, 12
))

status: proven lines of code: 69 used theorems/axioms: 60 unique nodes: 224
Derives from Axiom 4 (t ∈ N+) and Theorems 1, 2, 6, and 10, as well as number set properties and
algebraic manipulations.

17. ∀l∈{((−2t−1)+1)...2t−1}
((

2 · π ·
(
δ − l

2t

))
∈ ((−π) , π)

)
status: proven lines of code: 36 used theorems/axioms: 25 unique nodes: 79

Derives from Theorem 16, number set properties, and algebraic manipulations.

18. ∀l∈{((−2t−1)+1)...2t−1} | l 6=0

((
δ − l

2t

)
/∈ Z
)

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Derives from Theorem 16 in a fairly straightforward manner. We simply did not have time to implement
this.

19. ∀ε∈N
(
Psuccess (ε) =

(∑ε
l=−ε Pr((|(m− b)| = l))

))
status: unproven lines of code: - used theorems/axioms: - unique nodes: -

Derives from Axiom 11 (the definition of Psuccess), modular arithmetic, and basic probability theory
(summing the probabilities of independent events). This would not be difficult to implement, but we
did not have time.

20. ∀ε∈N+

(
Pfail (ε) =

((∑−(ε+1)
l=(−2t−1)+1 |αl|

2
)

+
(∑2t−1

l=ε+1 |αl|
2
)))

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Derives from Axiom 12 (the definition of Pfail), 14, and 15 (the definition of αl), and from Theorem 19
along with algebraic manipulations and the fact that sum of all possible, distinct outcome probabilities
is equal to one. This would require a little work, but there is no significant obstacle to producing this
proof.

21. ∀a,b∈Z
(
e

2·π·i·(a⊕b)
2t = e

2·π·i·(a+b)
2t

)
status: proven lines of code: 25 used theorems/axioms: 13 unique nodes: 35

Derives from Axioms 4 and 13 (the definition our ⊕ notation) as well as some algebraic manipulations

and the trigonometry-related identity that ∀x,r∈R
(
e

2·π·i·(x mod r)
r = e

2·π·i·x
r

)
.

22. ∀l∈Z
(
αl =

(
1
2t ·
(∑2t−1

k=0

(
e

−(2·π·i·k·(b⊕l))
2t · e2·π·i·ϕ·k

))))
status: unproven lines of code: - used theorems/axioms: - unique nodes: -

Derives from the definition of the quantum phase estimation algorithm defined in Axioms 5 and 6 as
well as the definition of αl in Axiom 14, and the definition of our modular arithmetic shorthand in
Axiom 13. This is not completely trivial, but comes from a relatively direct translation of the quantum
circuit operations on the input states. There is no significant obstacle here, but we did not have time
to do this.

9

23. ϕ =
(
b
2t + δ

)
status: unproven lines of code: - used theorems/axioms: - unique nodes: -

This is very simply derived from Axiom 10 (the definition of δ) but we did not have time.

24. ∀l∈Z
(
αl =

(
1
2t ·

1−e2·π·i·((2t·δ)−l)

1−e2·π·i·(δ− l
2t)

))
status: proven lines of code: 92 used theorems/axioms: 62 unique nodes: 285

Performs the summation in the expression for αl in Theorem 22 as a finite geometric series. Also uses
the definition of our ⊕ notation via Axiom 13, t ∈ N+ from Axiom 4, (2t − 1) ∈ N+ from Theorem
3, b ∈ Z from Theorem 7, ϕ and δ ∈ R from Theorems 6 and 11, the identity of Theorem 21, and
the relation between b, ϕ, and δ from Theorem 23. There is also various algebraic manipulations,
substitutions, and number set properties employed.

25. ∀l∈Z

|αl| = ∣∣∣1−e2·π·i·((2t·δ)−l)
∣∣∣

2t·
∣∣∣∣(1−e2·π·i·(δ− l

2t)
)∣∣∣∣

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Very easy to derive from Theorem 24, but we did not have time to do this.

26. ∀l∈{((−2t−1)+1)...2t−1} | l 6=0

(
|αl|2 ≤ 1

4·(l−(2t·δ))2

)
status: proven lines of code: 197 used theorems/axioms: 74 unique nodes: 425

Bounds |αl|2 using the expression for |αl| from Theorem 25. It uses Axiom 4 and Theorem 2 (t ∈ N+ and
2t−1 ∈ N+), Theorem 12 and 13 (αl ∈ C and related properties), Theorem 11, 15, 17, and 18 (δ ∈ R and
more specific constraints that avoid division by zero and enable the upper bounding). Specifically, we

bound |αl|2 using ∀θ∈[(−π),π]
(∣∣(1− ei·θ)∣∣ ≥ 2·|θ|

π

)
and ∀θ∈R

(∣∣(1− ei·θ)∣∣ ≤ 2
)

(theorems that we have

not proven in our system). We also employ various algebraic manipulations, including manipulations
of inequalities.

27. ∀ε∈{1...(2t−1−2)}
(
Pfail (ε) ≤

(
1
2 ·
(
1
ε + 1

ε2

)))
status: proven lines of code: 303 used theorems/axioms: 115 unique nodes: 658

Uses the expression for Pfail(ε) from Theorem 20 and the bound of |αl|2 from Theorem 26 along with
number set restrictions of Axiom 4 and Theorems 2, 8, 9, 10, 11, 12, 13, and 14. Employs vari-
ous algebraic manipulations, including manipulations of inequalities and summations (e.g., splitting
summations apart over separate ranges, and the fact that an inequality for all summand instances
implies the inequality of the summations). It also uses the fact that l → 1/l2 is an even func-

tion so that ∀a,b∈Z
((∑b

l=a
1
l2

)
=
(∑−a

l=−b
1
l2

))
, that it is a monotonically decreasing function so that(∑2t−1−1

l=ε
1
l2

)
≤
(

1
ε2 +

∫ 2t−1−1
ε

1
l2 dl

)
. These facts come from theorems not yet proven in the Prove-It

system. We assert (as an unproven Prove-It theorem) that ∀a,b∈R+ | a≤b

(∫ b
a

1
l2 dl ≤

1
a

)
.

28. Pfail(2) ≤ 3
8

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Simple arithmetic applied to Theorem 27, but we did not have time to do this.

29. Psuccess(2) ≥ 5
8

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Simple arithmetic applied to Axiom 12 (relating Psuccess and Pfail) and Theorem 28, but we did not
have time to do this.

10

30. Pr
[
|(ϕm − ϕ)|mod 1 <

3
2t

]
≥ 5

8

status: unproven lines of code: - used theorems/axioms: - unique nodes: -
Derives from Theorem 29 bounding Psuccess and Theorem 10 bounding δ. Theorem 29 indicates that
there at least 5/8 probability that m is within 2 units of b. Theorem 10 indicates that b is less than
one unit from the true answer. Therefore, we have at least a 5/8 probability of measuring an answer
that is within three 1/2t units from the true answer.

An additional theorem, not listed, would be to prove the success probability (or probability distribution) of
the algorithm quantified over all appropriate values of U , |u〉, and t via axiom elimination. We have not yet
implemented axiom elimination in the Prove-It system, but this step would be straightforward. Furthermore,
to be complete, we would want to prove that the depth (time) and width (number of qubits) of the quantum
circuit for the quantum phase estimation algorithm both scale linearly with t. This fact is obvious and would
not be difficult to prove in our system.

DISCUSSION:

In the course of this work, we added/modified several thousands of lines of code in the Prove-It software
package in addition to the lines of code indicated above for each theorem proof. Proof code is specific to
the corresponding proof but it relies upon the broader software package. The core of Prove-It is not meant
to expand significantly (though it did undergo a few modications). There is a layer in between the core and
proof code that is intended to expand. This layer includes the axioms and theorems of an expanding suite of
packages and code that makes it convenient to exploit this background knowledge. A particular convenience
is the use of object oriented programming in Prove-It. Typically, each type of operation (identified by its
literal operand) has a corresponding Python class with member functions that conveniently apply theorems
that or specific to that type of operation. This is the best way to utilize prove it. It avoids having to remember
over one hundred theorem names (as required in the proof of Theorem 27, for example) for different uses
and special cases. Instead, one learns method names associated with operation types for performing general
functions or transformations that could invoke one of more of several possible theorems depending upon the
specific case. An instance of an operation class will know about its expression form and can “decide” what
theorem(s) is/are appropriate to perform the desired function/transformation. The idea is to mimic the way
that a mathematician, scientist, or engineer organizes their knowledge of math. We group related procedures
together that can take several forms. For example, cancelation has a general meaning but takes on many
forms. It can be cancelation with respect to a fraction with one or more factors in the numerator and one
or more factors in the denominator. Or it can be cancelation with respect to subtraction with one or more
terms on either side of the minus sign.

In the course of the current project, we performed a mix of this “best” practice as well as some less ideal
implementations for expediency. We implemented good, convenient methods for different types of factoring,
distributing, and many cases of cancellation. For many of the manipulations of ordering relation inequalities,
in contract, we used theorems on a case by case basis. There were also various specialty theorems that we
used on a case by case basis in order to accomplish our task in the short time that we had. This was planned
from the beginning (in the proposal). For special cases that are not generally useful as named theorems on
their own, it would be better to write code that automates the proofs. For example, we could automate the
evaluation of simple arithmetic, of basic integrals, or other instances where procedures are straightforward
to automate. Along these lines, we did write some useful code for automating various number set proofs,
automatically applying “closure” theorems. For example, for an arbitrary arithmetic expression that is well
defined (without division by zero, etc.), we can automatically deduce that it is in the set of complexes,
denoted C, if all of its lowest-level components are known to be in the set of complexes, or any of its subsets.
This automation is quite versatile and was extremely valueable for producing these proofs. That said, it

11

could certainly use some improvements. Our proofs could easily be simplified (using fewer lines of code
and made to be more transparent) with improvements in the code base. However, we do have a very nice
demonstration of our theorem capabilities as it is.

Another improvement for the future will be to add more tools to aid the user in exploring the graph
of derivations that Prove-It uses to produce a derivation tree. It can be very frustrating for a user when
Prove-It is not able to prove a statement for reasons that are not clear. It takes time to figure out what
steps are missing. With tools to explore the graph that Prove-It uses internally, missing steps will become
apparent much more quickly.

Future work is also needed to fully implement a proof certification system. We have a plan that would
allow communication of proofs from untrusted parties. The user would have control over axioms/theorems
that are added or changed, and the derivation trees of proofs would be exported and imported without
running the other party’s proof code.

ANTICIPATED IMPACT:

Prove-It is a useful, evolving tool for a wide array of formal methods applications. Many types of critical
systems are developed at Sandia. Engineering systems that are formally verified is of paramount importance
to its mission. Investments in quantum technology and other promising cutting-edge research can be made
wisely and with more confidence using formal verification of key, theoretical insights. Across the diverse
areas of research at Sandia, trust and assurance is a greatly valued asset.

As the impact of Prove-It becomes broader, its inherent value also increases. As more people use Prove-It,
it will inevitably have more contributors. As more people contribute to Prove-It, it becomes more useful. As
it becomes more useful, more people will use it. Thus, there is an intrinsic positive feedback. At some point,
it (or something like it) will hopefully reach a self-sustaining critical mass. Wikipedia reached such a critical
mass many years ago and now it is regarded as an invaluable resource. Ideally, Prove-It (and/or other similar
tools) will become the backbone to some kind of “wiki-qed” portal of shared mathematical knowledge. This
system could also be used for private (proprietary or classified) mathematical and engineering knowledge, but
having a shared resource of public knowledge for theorem proving would really be invaluable for researchers.

This is the dream. It draws inspiration from the QED Manifesto, a document published in 1994 pushed
by Robert Boyer with input from several researchers. This document argues for a QED system that is
a repository of formalized mathematical knowledge. In their vision, it would arise from a large scale,
collaborative effort orchestrated by a research agency. However, as proven by the success of Wikipedia,
it is possible to build a critical mass with a modest investment. If communities of researchers perceive that
it is a useful tool, they will use it, contribute to it, share, and the system will grow.

Our modest demonstration of the quantum phase estimation algorithm is not likely sufficient to garner
the broad interest required for a snowball effect of gaining contributors. Hopefully, it will draw some interest
from the quantum information community. This is a very intelligent community that is open and receptive
to creative, new ideas. We will promote our work to this community. We are considering the development
of quantum circuit manipulation tools that would be useful to this community.

Before this project began, Prove-It was developed by Wayne Witzel (with ideas, encouragement, and
support from Robert Carr, a Sandia employee at the time) on “sweat equity” during non-working hours. As
a test of the system, we added a Boolean algebra framework (external to the core) with theorems proven
completely down to base axioms (facts that cannot be derived from anything that is more fundamental). We
built theorems up to point at which any Boolean expression, including quantification over Boolean values,
can be automatically evaluated (with no claims to efficiency, unlike SAT solvers). The ability to evaluate
Boolean expressions is not particularly impressive, but proving the evaluation to the level of base axioms
was a valuable demonstration of our approach.

12

Using the support from this project, we have extended the Prove-It system to treat numbers (integers,
reals, and complexes). Our number theory framework is far from complete. A much larger effort would
be required to make complete a set of useful theorems and procedures for algebraic manipulations. With a
relatively modest effort, we could extend the algebraic manipulation features of the system to make theorem
proving involving numerical systems much more efficient in Prove-It. The difference is that the modest
investment would not complete proofs down to base axioms. Our demonstration regarding the quantum
phase estimation algorithm shows the value of a flexible system that allows “shallow” proofs. Our proofs are
not complete down to base axioms, but we have the list of unproven theorems (as well as the axioms that
we assert to be true). Each of these can be can be checked and proven to a deeper level when there is down.

Building the system from the bottom (axioms) to the top (high-level theorems) is satisfying. However,
allowing users to work in either direction may be the key to gaining users without a substantial investment.
In this manner, the system is useful far beyond the extent to which it is complete (with respect to having
proofs down to the axiom level). Thus, there is hope. If we can make the system useful with simple tricks,
we can attract users that will help with the arduous taks of completing the foundation.

CONCLUSION:

We have demonstrated the utility and flexibility of our Prove-It system by producing the major components
for the computer-validated proof of the quantum phase estimation algorithm based upon a less formal proof
presented in “Quantum Computation and Quantum Information” by Isaac Chuang and Michael Nielsen.
We have presented the theorems, particular to this problem, that we have proven and those that remain to
be proven and have described their dependencies. For the theorems that we have proven, we indicate the
size of the program that builds the proof, the number of theorems and axioms it required, and size of the
its derivation tree. For the unproven theorems, we indicate the effort we expect is required to program the
proof. Certainly, we have fished the most challenging parts of the proof. The remaining pieces are relatively
straightforward.

None of our proofs are “complete” in the sense that they rely upon other theorems that are not yet
proven in this system. There are a large number of facts with respect to arithmetic, algebra, trigonometry,
calculus, and quantum mechanics that we accept without proof for the purposes of this demonstration. This
is consistent with our proposal and intention. It demonstrates a flexibility to work from top to bottom as
well as bottom to top with respect to low-level axioms versus high-level theorems. This flexibility makes
Prove-It be useful beyond the extent to which it is strictly complete. This may be the key to building a user
base without a substantial investment. When the user base reaches a critical mass, the system will be an
invaluable tool for a diverse array of researchers.

13

